
www.manaraa.com

Int J Parallel Prog (2009) 37:37–57
DOI 10.1007/s10766-008-0086-1

dRuby and Rinda: Implementation and Application
of Distributed Ruby and its Parallel Coordination
Mechanism

Masatoshi Seki

Received: 20 March 2008 / Accepted: 13 August 2008 / Published online: 24 September 2008
© Springer Science+Business Media, LLC 2008

Abstract The object-oriented scripting language Ruby is admired by many
programmers for being easy to write in, and for its flexible, dynamic nature. In the
last few years, the Ruby on Rails web application framework, popular for its produc-
tivity benefits, has brought about a renewed attention to Ruby for enterprise use. As
the focus of Ruby has broadened from small tools and scripts, to large applications,
the demands on Ruby’s distributed object environment have also increased, as has the
need for information about its usage, performance and examples of common practices.
dRuby and Rinda were developed by the author as the distributed object environment
and shared tuplespace implementation for the Ruby language, and are included as part
of Ruby’s standard library. dRuby extends method calls across the network while retai-
ning the benefits of Ruby. Rinda builds on dRuby to bring the functionality of Linda,
the glue language for distributed co-ordination systems, to Ruby. This article discusses
the design policy and implementation points of these two systems, and demonstrates
their simplicity with sample code and examples of their usage in actual applications.
In addition to dRuby and Rinda’s appropriateness for prototyping distributed systems,
this article will also demonstrate that dRuby and Rinda are building a reputation for
being suitable infrastructure components for real-world applications.

Keywords Ruby · Linda · dRuby · Rinda · TupleSpace · RMI

M. Seki (B)
Tochigi, Japan
e-mail: m_seki@mva.biglobe.ne.jp
URL: www.druby.org

123

www.manaraa.com

38 Int J Parallel Prog (2009) 37:37–57

1 Introduction

This article aims at giving you details on dRuby and Rinda. dRuby provides distributed
object environment for Ruby. Rinda is a coordination mechanism running on dRuby.
First, I would like to introduce Ruby. Ruby is an object-oriented scripting language
created by Yukihiro Matsumoto. Until recently, Ruby’s popularity was limited to a
small community of early-adopter programmers. Ruby is now rapidly gathering atten-
tion amongst business users for its potential productivity gains. An English translation
of the author’s Japanese dRuby book is currently being planned by the Pragmatic
Bookshelf.

Ruby has the following characteristics:

– Standard object-oriented features, such as classes and methods
– Everything is an object
– Untyped variables
– Easy-to-use libraries
– Simple, easy-to-learn syntax
– Garbage collector
– Rich reflection functionality
– User level threads

Ruby is categorized as a dynamic object-oriented language. Everything is composed
of objects, and there is no explicit typing of variables. Unification of methods is
done at execution time. Furthermore, Ruby’s rich reflection functionality supports
meta programming. Ruby is elaborately designed to set subtle constraints (in addition
to its outstanding flexibility) that lead programmers to naturally express what they
have in mind, and help them unconsciously realize the essence of object-oriented
programming.

dRuby extends Ruby’s method calls across processes and across the network. Rinda
is an implementation of the Linda coordination model [1]. Rinda is based on dRuby and
provides Ruby with tuple spaces. This article introduces not only dRuby’s concept and
its design policy but also its implementation and practical usage. This article discusses:

– The way of dRuby—dRuby’s overview and its design policy
– dRuby’s implementations
– Performance—Overhead in using dRuby
– Application—A real system executing dRuby, Rinda’s overview and a real system

executing Rinda

2 The Way of dRuby

In this section, I describe the design policy and characteristics of dRuby.
Blaine Cook, lead developer of Twitter (a micro-blogging service), described dRuby

in his presentation, “Scaling Twitter”.1

1 http://www.slideshare.net/Blaine/scaling-twitter/.

123

http://www.slideshare.net/Blaine/scaling-twitter/

www.manaraa.com

Int J Parallel Prog (2009) 37:37–57 39

Fig. 1 dRuby application
software structure

POSIX Windows MacOS X

Ruby

dRuby

Application

– Stupid Easy, Reasonably Fast
– Kinda Flaky, Zero Redundancy, Tightly Coupled.

Cook’s remarks are a good starting point for this discussion (Fig. 1).

2.1 Characteristics of dRuby

dRuby is one of several RMI libraries for Ruby. I did not aim for dRuby to be just
another conventional distributed object system for Ruby. Rather, I intended to extend
Ruby method calls to other processes and other machines. I think compatibility with
Ruby is more important than interoperability with other distributed systems.

As a result, dRuby extends the Ruby interpreter across other processes and other
machines, both in a physical sense and a temporal sense. Therefore, it is easy to
“distributize” an existing Ruby script.

dRuby has the following characteristics:

– Exclusively for Ruby
– Written purely in Ruby
– No “service” specification or associated interface definition language (IDL)

required

From the perspective of a conventional distributed object system, dRuby also has the
following characteristics:

– Easy to set-up
– Easy to learn
– Automatic selection of object transmission strategy (pass by value or pass by

reference)
– Reasonably fast
– Ruby processes act as both “clients” and “servers”—so there is no need for separate

server processes.

dRuby is a distributed object system exclusively for use with Ruby. dRuby can run
on any machine that runs Ruby, irrespective of operating system. dRuby can be used
to exchange objects and call methods across platforms.

dRuby is written completely in Ruby, not a special extension written in C. Thanks
to Ruby’s excellent thread, socket and marshaling class libraries, the initial version of
dRuby was implemented in just 200 lines of code. I believe that this demonstrates the

123

www.manaraa.com

40 Int J Parallel Prog (2009) 37:37–57

power and elegance of Ruby’s class libraries. dRuby is currently included as part of
the standard distribution of Ruby as one of its standard libraries, so dRuby is available
wherever Ruby is installed.

2.2 Compatibility with Ruby

dRuby adds a distributed object system to Ruby while preserving as much of the
“feel” of Ruby as possible. Ruby programmers should find dRuby to be a comfor-
table, seamless extension of Ruby. Programmers accustomed to other conventional
distributed object systems, however, may find dRuby to be a little strange.

Variables in Ruby are not typed, and assignment is not restricted by inheritance
hierarchies. Unlike languages with statically checked variables, such as Java, objects
are not checked for correctness before execution, and method look-up is only conduc-
ted at execution time (when methods are called). This is an important characteristic
of the Ruby language.

dRuby operates in the same fashion. In dRuby, client stubs (the DRbObject, also
called the “reference” in dRuby) are similarly not typed, and method look-up is only
conducted at execution time. There is no need for a listing of exposed methods or
inheritance information to be known in advance. Thus, there is no need to define an
interface (e.g. by IDL).

Aside from allowing method calls across a network, dRuby has been carefully
developed to adhere as closely to regular Ruby behaviour as possible. Consequently,
much of unique benefits of Ruby are available for the programmer to enjoy.

For example, methods called with blocks (originally called iterators) and exceptions
can be handled as if they were local. Mutex, Queue and other thread synchronization
mechanisms can also be used for inter-process synchronization without any special
consideration. I give an example of Queue usage in Sect. 3.1.1.

2.3 Passing Objects

Concepts that didn’t originally exist in Ruby were introduced in dRuby as naturally
as possible. Object transmission is a good example. When remote methods are called,
objects such as the method arguments, return values and exceptions are transmitted.
Method arguments are transmitted from client to server, while exceptions and return
values are transmitted from server to client. In this article, I will refer to both of these
types of object transmission as object exchange.

Assignment (or binding) to variables in Ruby is always by reference. Clones of
objects are never assigned. It is, however, different in dRuby. In the world of distri-
buted objects, distinguishing between “pass by value” and “pass by reference” is an
unavoidable fact of life. This is true also of dRuby.

While a computing model where references are continually exchanged forever
(or until they become nil) is conceivable, in reality applications will, at some point,
need “values”. The mechanism provided by dRuby minimizes the need for program-
mers to care about the difference between by-value or by-reference object exchange,
while also striving to be reasonably efficient. That is, programmers do not need to

123

www.manaraa.com

Int J Parallel Prog (2009) 37:37–57 41

explicitly specify whether to use pass-by-value or pass-by-reference. Instead, the
system automatically decides which to use. This decision is made using a simple
rule—serializable objects are passed by value, while unserializable objects are passed
by reference. Methods of objects exported by pass-by-reference (and of objects expli-
citly exported via DRb.start_service) are invoked from a remote process via the dRuby
server. If this service has not been started, an exception is raised. So, I recommend to
always use DRb.start service even if no object is being explicitly exported, at least in
the development phase.

Although this rule may not always be correct, in most situations it will work. Firstly,
note that it is impossible for objects that cannot be serialized to be passed by value. The
problematic case is where a serializable object that is more appropriately passed by
reference is instead passed by value. To handle this case, dRuby provides a mechanism
whereby serializable objects can be explicitly marked to be passed by reference. An
example will be discussed later in this article.

By automatically choosing the means of object transmission, dRuby minimizes the
amount of code that needs to be written to handle object transmission.

dRuby’s lack of a need for interface definition (e.g. IDL) and declaration of object
transmission style, are not the only ways that dRuby differs from other distributed
object systems. This is because dRuby aims to be a “Ruby-like distributed object
system”, and perhaps also why dRuby may be perceived as being “kinda flaky”.

2.4 Unsupported Things

Finally, I shall introduce some of the features that dRuby does not support, namely
garbage collection and security.

dRuby does not implement distributed garbage collection because I have not found
a solution that is both cheap and realistic. Currently, it is the responsibility of the
application to prevent exported objects from being garbage collected. The option to
protect objects from garbage collection using a ping mechanism2 has been provided,
however, there is a risk that circular references will give rise to objects that never get
garbage collected. Possible solutions to this problem, including the modification of
the Ruby interpreter, are currently being explored.

dRuby currently does not provide any mechanisms for security. At most, dRuby
imposes the same restrictions on method visibility as Ruby does, but is helpless against
malicious attacks. It is, however, possible to use SSL to secure network communica-
tions.

In this chapter, I described dRuby design policy. To summarize, dRuby does extend
Ruby’s method calls nearly seamlessly, so dRuby is not just a standard Ruby-like
interface of RMI. Therefor, it is easy to “distributize” an existing Ruby script. dRuby
co-exists with traditional RMI approaches like XML-RPC, SOAP, CORBA.

2 The ping mechanism is composed of DRb::TimerIdConv and periodical access. DRb::TimerIdConv keeps
objects alive for a certain amount of time after their last access. http://d.hatena.ne.jp/m_seki/20061101,
http://segment7.net/projects/ruby/drb/idconv.html.

123

http://d.hatena.ne.jp/m_seki/20061101
http://segment7.net/projects/ruby/drb/idconv.html

www.manaraa.com

42 Int J Parallel Prog (2009) 37:37–57

For example, some developers use one of these via HTTP as an interface for external
network access and dRuby in their internal backend systems.

3 dRuby’s Implementation

In this chapter, I discuss some interesting features of dRuby and its implementation.
Using code from the initial version of dRuby and other sample code, I will describe in
detail the basics of RMI usage in dRuby and the mechanism of object transmission.

3.1 Basic RMI

First, I shall explain the implementation of basic method calling using actual code.

3.1.1 An Example: The Producer–Consumer Problem

The following code is a typical implementation of the producer-consumer problem
using a shared queue.

shared queue server
require ’drb/drb’ # (1)
require ’thread’ # (2)

queue = SizedQueue.new(10) # (3)
DRb.start_service(’druby://localhost:9999’, queue) # (4)
sleep # (5)

Applications using dRuby must start by loading ’drb/drb’ (1). Next, a SizedQueue
object (3) with a limited number of buffer elements is instantiated. ’thread’ (2) is needed
for using SizedQueue class. Then the dRuby server is started (4). DRb.start_service
is defined in ’drb/drb’ (1). DRb.start_service is given the objects to be made public by
dRuby, as well as the URI for the service. In this case, the SizedQueue object is made
public at the URI “druby://localhost:9999”. A dRuby server created by dRuby always
has an object that encapsulates the service. This object is the “front” object (Fig. 2).

Object
foo()

Front

foo()
bar()

Application

Client
Foo

Bar

Object

Fig. 2 Front object and typical system

123

www.manaraa.com

Int J Parallel Prog (2009) 37:37–57 43

Finally, the main thread is stopped, without exiting, by calling sleep (5). Even
though the main thread is stopped, the service continues to be available as it continues
to run on threads in the background.

producer
require ’drb/drb’

DRb.start_service # (1)
queue = DRbObject.new_with_uri(’druby://localhost:9999’) # (2)

100.times do |n|
sleep(rand)
queue.push(n) # (3)

end

consumer
require ’drb/drb’

DRb.start_service
queue = DRbObject.new_with_uri(’druby://localhost:9999’)

100.times do |n|
sleep(rand)
puts queue.pop # (4)

end

The client-like consumer applications also call DRb.start_service (1). A call to
DRb.start_service without any arguments indicates that the application has no front
object. Note that applications that never export an object do not need to call
DRb.start_service. Next, the reference object for the distributed queue is instantiated
(2). DRbObjects are proxies referencing remote objects. A DRbObject instantiated
with a URI references the object associated with that URI. Messages are then sent to
the remote object (3).

To run the example, execute in separate terminals on the same host the scripts in
this order: queue.rb, consumer.rb, producer.rb.

This simple example demonstrates how Ruby objects can be shared between pro-
cesses in just a few lines of code. It is easy to write a distributed system in dRuby,
just as it is easy to write applications in Ruby. Not only is dRuby suitable for writing
distributed systems for prototyping or learning architectures, but such systems can
also be implemented for use in production.

3.1.2 Implementation of RMI

This section explains dRuby’s implementation of RMI using code from the first version
of dRuby.3 The first version of dRuby is easy to understand, as it does not cover as
much of the complexity as later versions. When a method is invoked on a DRbObject
that is pass-by-reference, a message is transmitted to a remote dRuby server along with

3 http://blade.nagaokaut.ac.jp/cgi-bin/scat.rb/ruby/ruby-list/15406.

123

http://blade.nagaokaut.ac.jp/cgi-bin/scat.rb/ruby/ruby-list/15406

www.manaraa.com

44 Int J Parallel Prog (2009) 37:37–57

an identifier. The dRuby server uses the identifier to search for an object and invokes
an appropriate method. Let’s have a look at the implementation of DRbObject.

class DRbObject
def initialize(obj, uri=nil)
@uri = uri || DRb.uri
@ref = obj.id if obj

end

def method_missing(msg_id, *a)
succ, result = DRbConn.new(@uri).send_message(self, msg_id, *a)
raise result if ! succ
result

end
attr :ref

end

The only method defined in DRbObject is method_missing. In Ruby, method_
missing is the method called when the receiver object receives an unknown method—
i.e. a “missing method” is invoked. method_missing in DRbObject connects to the
dRuby server, sends the ID of the corresponding object and the name of the invoked
method and its arguments, and then returns the result.

The methods “push” and “pop” in the earlier script are examples of this. These
methods are not defined in DRbObject, so method_missing is invoked, and the message
is forwarded to the dRuby server specified by the URI given on initialization.

class DRbServer
...
def proc
ns = @soc.accept
Thread.start(ns) do |s|
begin

begin
Ruby supports parallel assignment.
An assignemnt expression have one or more lvalues.
ro, msg, argv = recv_request(s)
if ro and ro.ref
obj = ObjectSpace._id2ref(ro.ref)

else
obj = DRb.front

end
result = obj._ _send_ _(msg.intern, *argv)
succ = true

rescue
result = $!
succ = false

end
send_reply(s, succ, result)

ensure
s.close if s

end
end

123

www.manaraa.com

Int J Parallel Prog (2009) 37:37–57 45

end
...

end

The pseudo code above describes the main behavior of the dRuby server. After
“accept”ing a socket, a new thread is created and the object’s identifier, method to
be invoked and arguments are received. After finding the object corresponding to
the identifier, the method is invoked on it. In most distributed object systems, it is
common for a proxy defining the forwardable methods to be prepared for the class
of each receiver. In dRuby, however, the usage of Ruby’s method_missing method
and runtime method lookup mechanism allows a single kind of proxy to act as the
client stub for all classes. When the remote receiver (i.e. the original object) receives
a message it cannot handle, it raises a NameError exception—the same behavior as a
regular Ruby object.

Notice that a new thread is created for each individual message. Creating threads has
a number of advantages, such as reducing the likelihood of exceptions by providing
an independent execution context and avoiding network IO blocking. The greatest
advantage for users, however, is that multiple RMI is permitted. This is the reason
why the earlier producer-consumer problem program does not deadlock. When the
pop invoked by the consumer causes the DRbServer to block, the producer is still able
to push. Even when dRuby is in the middle of an RMI, it is still possible to RMI. As
a result, callback style execution, iterators and recursive calls will work in dRuby, as
well as the usage of thread synchronization mechanisms across processes. Because
RMI processing is multithreaded, the user does have the responsibility to ensure thread
safety.

3.2 Message Format

This section describes the message format and the mechanism for object exchange.
dRuby uses TCP/IP for networking and the Marshal class library as its encoding

mechanism.4

Marshal is a unique object serialization library, included as part of Ruby’s core
libraries. Starting from the supplied object, Marshal traces references one-by-one to
serialize the entire graph of related objects. dRuby makes heavy usage of the Marshal
library. In some systems, only objects with the “Serializable” property are considered
to be serializable. In Ruby, however, all objects are initially considered to be seriali-
zable. When Ruby encounters an object whose serialization is meaningless, or when
serialization proves to be impossible (such as File, Thread, Proc, etc.), an exception
will be raised.

The request forwarded to remote object is composed of the following set of infor-
mation (each component is an object serialized by Marshal).

– object identifier
– method string
– arguments

4 The network and the message format can be customized.

123

www.manaraa.com

46 Int J Parallel Prog (2009) 37:37–57

Let’s have a look at the implementations of the first version. The latest version also
sends length of each component, but it does not have any other essential difference.

def dump(obj, soc)
begin
str = Marshal::dump(obj) # (1)

rescue
ro = DRbObject.new(obj) # (2)
str = Marshal::dump(ro) # (3)

end
soc.write(str) if soc
return str

end

This short snippet of code is one of the distinguishing parts of dRuby’s implemen-
tation. First, the object passed as an argument is serialized using Marshal.dump (1).
In the case that an exception is raised, the reference to the object (i.e. the DRbObject
created (2) with the object) is serialized using Marshal.dump. (3) When Marshal.dump
fails, this means that the target object was unserializable, or an unserializable object
was referenced by the target object. In this case, dRuby does not allow the RMI to fail.
Unserializable objects, or objects that cannot be passed as values, are instead passed as
references to the object. This behavior is one of the tricks that dRuby uses to minimize
the gap between dRuby and vanilla Ruby.

Let’s see it in action. In this example, we will prepare a shared dictionary. One
service registers services in the dictionary, while another service uses the services in
the dictionary.

We’ll deal with the dictionary service first. In distributed systems parlance, we
might refer to it as the name server. Since we’re just making a Hash public, it’s very
short.

dict.rb
require ’drb/drb’

DRb.start_service(’druby://localhost:23456’, Hash.new)
sleep

Next is a log service. This is a simple service that records a time and a string.
The SimpleLogger class defines the main logic. Running logger.rb will register a
SimpleLogger object and a description with the dictionary service, and then sleep. In
this example, DRb.start_service is called without the argument. The logger service
object is not explicitly exported. It happens implicitly when the logger is assigned
to the hash table by the object passing mechanism described in Sect. 2.3. Since the
SimpleLogger references a File object (in this script, standard error output), it cannot
be serialized with Marshal.dump. Consequently, it cannot be passed by value, and is
passed by reference instead.

logger.rb
require ’drb/drb’

123

www.manaraa.com

Int J Parallel Prog (2009) 37:37–57 47

require ’monitor’
DRb.start_service # (1)
dict = DRbObject.new_with_uri(’druby://localhost:23456’)
class SimpleLogger
include MonitorMixin

def initialize(stream=$stderr)
super()
@stream = stream

end

def log(str)
s = "#{Time.now}: #{str}"
synchronize do
@stream.puts(s)

end
end

end

logger = SimpleLogger.new
dict[’logger’] = logger
dict[’logger info’] = "SimpleLogger is here."
sleep

Finally, I will show how to use the log service. The script app.rb creates a reference
to the dictionary service and retrieves the logger service using the logger’s description
string. After inspecting each object with the p method, we see that the info object is
simply the string object “SimpleLogger is here.”, while the logger object is revealed
to be a DRbObject.

app.rb
require ’drb/drb’

DRb.start_service
dict = DRbObject.new_with_uri(’druby://localhost:23456’)

info = dict[’logger info’]
logger = dict[’logger’]

p info #=> "SimpleLogger is here."
p logger #=> #<DRb::DRbObject:0x....>

logger.log("Hello, World.")
logger.log("Hello, Again.")

logger.log() is an RMI that generates log output. We should be able to check the
output in the terminal running logger.rb.

123

www.manaraa.com

48 Int J Parallel Prog (2009) 37:37–57

In this chapter, I described two distinguishing features of dRuby’s implementation
with working examples: the method call implementation, and the implementation of
the mechanism for selecting the method of object transmission and message format.
Extracts from the first version of dRuby were used in the explanations, but the reader
should be aware that the essence of the implementation remains unchanged in the
current version.

4 Performance

In this chapter, I discuss results from testing dRuby’s RMI performance.
The data produced by the following experiment indicates the maximum possible

RMI rate between processes on the same machine. The results from this experiment
should be considered to be for a best-case scenario, and not results for typical usage.
The results should give a good reference for the degree of overhead in dRuby.

count_test.rb
require ’drb/drb’

class Test
def count(n)

n.times do |x|
yield(x)

end
end

end

DRb.start_service(’druby://yourhost:32100’, Test.new)
sleep

count_test.rb calls back caller’s block using yield.

count.rb
require ’drb/drb’

DRb.start_service(nil, nil)
ro = DRbObject.new_with_uri(’druby://yourhost:32100’)
ro.count(10000) {|x| x}

I measured the time taken for 10,000 remote method invocations in two different
environments. The first case measures transmission between guest OS running on
a virtual machine on a host OS, and the host OS on the same machine (Pentium4
3.0 GHz). This combination is Ruby on Windows XP, and Ruby on a coLinux instance
running as a guest OS within the Windows XP host OS.

% time ruby count.rb
real 0m11.250s
user 0m0.810s
sys 0m0.260s

123

www.manaraa.com

Int J Parallel Prog (2009) 37:37–57 49

For the following set of results, RMI is not used. Instead, regular method calls
within the same process were tested.

% time ruby count.rb
real 0m0.044s
user 0m0.040s
sys 0m0.010s

The next two sets of results are from executing the tests on an iMac G5. The first set
of results are with separate processes on the same OS, while the second set of results
used regular method calls within a single process.

real 0m13.858s
user 0m6.517s
sys 0m1.032s

real 0m0.079s
user 0m0.031s
sys 0m0.012s

Between 700–900 remote method invocations per second were achieved. Whether
this is sufficient for your application is for you to decide. Note that regular method
calls within the same process (without RMI) were approximately 200 times faster. The
frequency of RMI is likely to have a significant impact on application performance,
and is an important point to consider when building real applications.

The last result set is from executing the tests with two machines (iMac G5 and
iBook G4) connected by wireless LAN (IEEE 802.11b/11 Mbps).

real 0m47.010s
user 0m11.494s
sys 0m2.794s

5 Applications

In this section, I introduce a few applications which use dRuby. I also discuss a
distributed coordination system based on dRuby, Rinda, and a practical example.
While not discussed here, it is interesting to note that the Ruby on Rails debugger
makes use of dRuby, as does the asynchronous processing associated with a number
of Web applications.

5.1 Backend Service of Large Scale Web Application

The Hatena screenshot service is an example of a backend use in large scale Web
applications. The Hatena screenshot service is a service reported by Tateno at Ruby
Kaigi 2006. The screenshot service provides thumbnails of, for example, registered
URL screenshots to other Hatena services like blogs. The web front end is run on
Linux, but the screenshot processing is implemented using Windows IE components,

123

www.manaraa.com

50 Int J Parallel Prog (2009) 37:37–57

Fig. 3 Hatena snapshot service

Queue

SnapShot
Engine

DB

httpd

SnapShot
Engine

Linux Windows

1. take a request
2. make the snapshot
3. store to DB

because this achieves better performance. The Linux front end uses dRuby to send
objects containing a URL and return method to the screenshot processes running on
Windows (Fig. 3).

According to data presented at Ruby Kaigi 2006 [2,6], this system handles about
120 SS/min (170,000 SS/day) using two backend machines.

5.2 In-memory Database, or Persistent Process State

Next, I shall introduce the usage of dRuby as persistent memory, or as a persistent
process state. Many problems in web applications relate to the need for both processes
that deal with short-lived request-response cycles, and semantic processes.

One concrete example is CGI. CGI programs are invoked upon receiving a single
request, and finish after returning a response. From the point of view of the user on
their web browser, however, the application appears to have a much longer life-cycle.
In order to make a series of small request-response cycles feel like a single long-lived
application, each CGI instance must leave a “will” for the next generation before it
dies.

The management of these “wills” (session management) is one of the major pain
points in web application programming. Many factors need to be taken into account—
the serialization of state, handling mutual exclusion in files or relational databases,
and dealing with conflicts arising from multiple, simultaneous requests.

One approach is to minimize, or even eliminate, the “will” left for the next process
by combining the short-lived front-end with a long-lived, persistent application.

RWiki is an interesting WikiWikiWeb [3] implementation that applies such an
architecture.

Meta-data such as the source of the Wiki page, the cache of the HTML output, links
and update time stamps, are all maintained in memory on a long-lived server process.
The short-lived CGI processes access this server via dRuby to retrieve Wiki pages
requested by the user. One private RWiki server hosts approximately 20,000 pages in
memory. In order to be able to rebuild the site after a reboot, the server constantly
logs sufficient data on disk. These logs, however, are never referenced during normal
execution.

The following example is an extremely small CGI script (4 steps), along with a
simple “counter” server. Let’s quickly review the mechanism of CGI. A CGI process

123

www.manaraa.com

Int J Parallel Prog (2009) 37:37–57 51

retrieves a HTTP request from a CGI environment (typically a web server) via standard
input (stdin) and environment variables, and then returns a response through standard
output (stdout).

This CGI script invokes the comparatively long-lived counter server and passes it
the environment variables and references to the standard output and input. This is the
frontend.

#!/usr/local/bin/ruby

require ’drb/’drb’

DRb.start_service(’druby://localhost:0’) # (1)
ro = DRbObject.new_with_uri(’druby://localhost:12321’) # (2)
ro.start(ENV.to_hash, $stdin, $stdout) # (3)

When the frontend invokes the remote object’s start method (3), it effectively exports
objects representing standard input and standard output, so it has to act as a dRuby
“server”. It starts the dRuby service on unspecified port of localhost (1). The OS will
pick unused port. Next, the reference object for the counter server is instantiated (2).
Finally, the frontend invokes the “start” method passing the environment variables
by value as a hash and standard input and output by reference (3). “start” method is
inherited from WEBrick::CGI.

require ’webrick/cgi’
require ’drb/drb’
require ’thread’

class SimpleCountCGI < WEBrick::CGI
def initialize

super
@count = Queue.new
@count.push(1)

end

def count
value = @count.pop

ensure
@count.push(value + 1)

end

def do_GET(req, res)
res[’content-type’] = ’text/plain’
res.body = count.to_s

end
end

DRb.start_service(’druby://localhost:12321’, SimpleCountCGI.new)
sleep

123

www.manaraa.com

52 Int J Parallel Prog (2009) 37:37–57

6 Rinda and Linda

Linda is a simple coordination model based on a virtual shared memory organized
into tuples and tuple spaces that enables coordinate execution of multiple tasks. It is a
very attractive model that can manage various parallel programming challenges, even
though it is simple. Because of this, the Linda model has been incorporated into many
languages. C-Linda, JavaSpace and Rinda are typical examples.

C-Linda enhances the base language C by implementing Linda operations using
a combination of preprocessing and a runtime support library. JavaSpace provides
a collection of Java classes that implement the Linda model. The implementations
of Ruby’s tuple space is provided by the library Rinda which makes use of dRuby.
C-Linda provides a single tuple space, while JavaSpaces and Rinda allow for multiple
tuple spaces.

Rinda provides the basic Linda operations: out, in, inp, rd, rdp. Eval is not provided,
but it can be replaced in some situations by the use of Ruby threads.

The latest version of Rinda follows JavaSpaces’s naming conventions [4] for the
operations:

write (out) Add a tuple to tuple space.
take (in) Delete a matching tuple from the tuple space, and return the deleted tuple.

If a matching tuple does not exist, block. “matching” is discussed below.
read (rd) Return copy of a matching tuple. If matching tuple does not exist, block.

Take and read accept timeouts. If the timeout is set to zero, they behave similar to
inp and rdp. Apart from these basic operations, “read_all” is also available to read all
tuples matching given patterns. “read_all” is particularly useful for debugging.

Tuples and patterns are represented by Ruby arrays. Patterns for matching tuple are
more general than C-Linda and include ones natural to Ruby. Wild cards (nil indicates
a wild card in Rinda), classes, ranges and regexps can all be specified. Rinda, in effect,
can be used as a sort of query language.

A time limit can be set on a tuple, although this function is still experimental.
Both times in seconds and life time update objects (called renewers in Rinda) can be
specified for the time limit. A renewer will be asked whether or not to renew the life
time of a tuple. Rinda allows a renewer to be a dRuby’s reference. Using this feature,
we can, for instance, provide for the expiration of some tuples in the event that a tuple
creator is closed abnormally [5,7].

6.1 Dining Philosophers

In terms of Rinda, I explain to you with actual code.

require ’rinda/tuplespace’ # (1)

class Phil
def initialize(ts, num, size) # (2)

@ts = ts
@left = num

123

www.manaraa.com

Int J Parallel Prog (2009) 37:37–57 53

@right = (@left + 1) % size
@status = ’ ’

end
attr_reader :status

def think
@status = ’T’
sleep(rand)
@status = ’_’

end

def eat
@status = ’E’
sleep(rand)
@status = ’.’

end

def main_loop # (3)
while true
think
@ts.take([:room_ticket])
@ts.take([:chopstick, @left])
@ts.take([:chopstick, @right])
eat
@ts.write([:chopstick, @left])
@ts.write([:chopstick, @right])
@ts.write([:room_ticket])

end
end

end

ts = Rinda::TupleSpace.new # (4)
size = 10
phil = []
size.times do |n|
phil[n] = Phil.new(ts, n, size)
Thread.start(n) do |x| # (5)

phil[x].main_loop
end
ts.write([:chopstick, n])

end

(size - 1).times do
ts.write([:room_ticket])

end

123

www.manaraa.com

54 Int J Parallel Prog (2009) 37:37–57

while true # (6)
sleep 0.3
puts phil.collect {|x| x.status}.join(" ")

end

The well-known “dining philosophers” problem is introduced here. This program
uses two types of tuples. One is a chopstick and the another is a room_ticket. A
chopstick tuple has two elements. The first element is the symbol5 “:chopstick”, and
the second element is an integer indicating the chopstick’s number. room_ticket tuples
limit the number of philosophers let into the dining room—a philosopher must have a
room_ticket to enter the room. The tuple contains just a symbol “:room_ticket”.

Phil class models a philosopher. The object has instance variables indicating status
(2). These variables are required to monitor a philosopher’s status. The main_loop
method in the Phil class is an infinite loop simulating a philosopher’s actions (3).

After executing think(), a philosopher gets a ticket that permits entry to the dining
room and then picks up two chopsticks, first the one to the left and then the one to the
right. Once all items are ready, the philosopher executes eat(). When finished dining,
the right chopstick, left chopstick and the room ticket are returned to the tuple space,
and the philosopher again executes think() to ponder the Way of Ruby.

The main program first creates a tuple space (4) and then creates the philosophers,
invoking the main loop method of each by subthread (5). These operations are similar
to the eval() operation in C-Linda. As its is creating philosophers, the main program
also creates chopsticks (one per philosopher, but keep in mind that two are needed to
eat). Next the main program creates a number of room tickets equal to one less than
the number of philosophers. The last infinite loop monitors the philosophers every
0.3 seconds (6). The loop displays the status of each philosopher: thinking, dining, or
holding chopsticks.

6.2 Tuple and Pattern

As mentioned before, a tuple or pattern is represented as a Ruby Array. All Ruby
objects, including dRuby’s reference object, can be used as an element of these Arrays.
Here are some examples of tuples:

[:chopstick, 2]
[:room_ticket]
[’abc’, 2, 5]
[:matrix, 1.6, 3.14]
[’family’, ’is-sister’, ’Carolyn’, ’Elinor’]

The matching rules for tuples and patterns are a little unusual. nil is interpreted as
a wild card which can match any object. Each non-nil pattern element is compared
with the corresponding tuple element by using the relationship operator “===”.

“===” is a special equality comparison, similar to “==”. In certain situations, howe-
ver, it is more general. For example, when a pattern element is a Regexp, “===” is

5 Symbol is a Ruby Class.

123

www.manaraa.com

Int J Parallel Prog (2009) 37:37–57 55

nothing but pattern matching of strings; while if the pattern element is a Range, “===”
indicates whether or not the corresponding tuple element is within the range limits.
When a Class is specified as the pattern element, “===” behaves as kind_of?(), so that
patterns which specify a class can be described as well. kind_of?() returns true if Class
is the class of object, or if Class is one of the superclasses of object.

The followings are some examples of patterns.

[/ˆA/, nil, nil] (1)
[:matrix, Numeric, Numeric] (2)
[’family’, ’is-sister’, ’Carolyn’, nil] (3)
[nil, ’age’, (0..18)] (4)

1. Matches a tuple with three elements and the first element must be a string that
starts with “A”.

2. Matches a tuple which has the symbol “matrix” as its first element, and the second
and the third elements match the class Numeric.

3. Matches a tuple representing “Carolyn’s sister”.
4. Matches a tuple representing an age between 0 and 18.

Let’s test these patterns by using a shared TupleSpace server and the interactive
environment irb. First, we start the server with these four lines:

require ’rinda/tuplespace’
ts = Rinda::TupleSpace.new
DRb.start_service(’druby://localhost:12121’, ts)
sleep

Next, we check patterns using an interactive Ruby session.
% irb --simple-prompt -r rinda/rinda
>> DRb.start_service
>> ts = DRbObject.new_with_uri(’druby://localhost:12121’)
>> ts.write([’seki’, ’age’, 20])
>> ts.write([’sougo’, ’age’, 18])
>> ts.write([’leonard’, ’age’, 18])
>> ts.read_all([nil, ’age’, 0..19]) # using Range object (0..19)
=> [["sougo", "age", 18], ["leonard", "age", 18]]
>> ts.read_all([/ˆs/, ’age’, Numeric]) # using Regexp object (/ˆs/)

and Numeric class
=> [["seki", "age", 20], ["sougo", "age", 18]]
>> exit

You can see that patterns offer a Ruby-like flexibility. You might also wish to use
tuple spaces as a simple data base. Keep in mind that Rinda conducts a linear search to
match patterns and tuples, so you have to be careful when dealing with a large number
of tuples.

6.3 Special-case Optimization

The current Rinda implementation uses a special case optimization in order to perform
high-speed searches. Experience indicates that tuples of the following kind are often
used by applications:

123

www.manaraa.com

56 Int J Parallel Prog (2009) 37:37–57

[:screenshot, 12345, "http://www.druby.org"]
[:result_screenshot, 12345, true]
[:prime, 10]

That is to say, it is common to use tuples composed of a symbol acting as a message
“type” and some arguments. When using these kinds of tuples, take and read often use
patterns like:

[:screenshot, nil, String]
[:result_screenshot, 12345, nil]
[:prime, Numeric]

Given this situation, you can probably obtain better performance by using the first
symbol element as a key that maps to a collection of tuples whose first element is
that symbol, and then focusing the search on that collection. We cannot use this in
general, because not all objects can be used as a key, but a symbol is appropriate and
a symbol is as easy to read as a string. When nil is used as first element of a pattern,
all collections are searched.

6.4 Application of Rinda

Buzztter is a Web service that processes Twitter sentences [8]. Twitter is a SNS6 spe-
cialized for short sentences. Buzztter collects sentences posted into Twitter, and figures
out which words are used more often than usual. By doing so, Buzztter understands
the overall trend of words usage at a given moment in Twitter.

Buzztter is composed of several subsystems. One of these is a distributed crawler
sub-system that uses Twitter’s API (HTTP based) to collect sentences. The crawler
subsystem has multiple fetchers that fetch information from Twitter and importers to
make it persistent. Rinda and dRuby are used as mediators between the fetchers and
the importers. For reference, the following indicates the data rates handled by Buzztter
(as of Nov 3, 2007)

– 72 MB per day
– 125000 transaction per day

6.5 Persistent Rinda

A Rinda release with persistent tuple spaces was announced at Ruby Kaigi 2007.
Normally the contents of a TupleSpace instance disappear once processes using it
finish. The contents of a persistent TupleSpace instance, however, are available after
reboot. In order to be able to rebuild the TupleSpace after a reboot, the persistent
TupleSpace constantly logs all activity (write, take) on disk.

6 Social Networking Service.

123

http://www.druby.org

www.manaraa.com

Int J Parallel Prog (2009) 37:37–57 57

7 Conclusion

I have discussed dRuby’s concept, design, implementations and provided examples
of practical usage. In addition, I have discussed the Rinda implementation of Linda’s
tuple space, based on dRuby. Both dRuby and Rinda are designed to be simple sys-
tems in order for Ruby programmers to feel comfortable with them. Hence, they are
very appropriate for prototyping a distributed system. The practical examples dis-
cussed in this article, however, illustrate that they are not just “toys” of limited use.
Those examples clearly demonstrate that dRuby and Rinda are robust infrastructure
for building practical applications.

Acknowledgements I’d like to thank Hisashi Morita, Leonard Chin, Mayumi Morinaga, Sougo Tsuboi
and Takashi Egawa for translating and reviewing.

References

1. Carriero, N., Gelernter, D.: Linda in context. Commun. ACM 32(4), 444–458 (1989)
2. Hatena Screenshot. http://screenshot.hatena.ne.jp/
3. Leuf, B., Cunningham, W.: The Wiki Way: Quick Collaboration on the Web. Addison-Wesley Longman

Publishing Co., Inc., Boston, MA, USA (2001)
4. Oaks, S., Wong, H.: Jini in a Nutshell: A Desktop Quick Reference. O’Reilly & Associates, Inc., Sebas-

topol, CA, USA (2000)
5. Seki, M.: Distributed and Web Programming with dRuby. Ohmsha (2005)
6. Seki, M.: dRuby Again. http://www.druby.org/dRubyAgain.pdf (2007). Presentation at RubyKaigi

2006, Tokyo, Japan
7. Seki, M.: Rinda: Answering the Rubyconf, Rubykaigi. http://www.druby.org/RK07.pdf (2007).

Presentation at RubyKaigi 2007, Tokyo, Japan
8. Shidara, Y.: Inside Buzztter. http://www.slideshare.net/dara/buzztter, 11, 2007

123

http://screenshot.hatena.ne.jp/
http://www.druby.org/dRubyAgain.pdf
http://www.druby.org/RK07.pdf
http://www.slideshare.net/dara/buzztter

www.manaraa.com

